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ABSTRACT

We study whether vision—language models can truly reason about geometry rather
than merely label diagrams. On a MathVerse [Zhang et al.| (2024b) subset of
multiple-choice problems, eight baselines—ranging from text-only LLMs to state-
of-the-art VLMs—still struggle with fine-grained spatial relations. We introduce
an iterative pipeline that alternates planning questions, VQA fact extraction, and
belief-state reasoning. Without additional training, the full GPT-40 variant dou-
bles baseline description quality and raises accuracy to 40 %, while an open-
weights Qwen version reaches 34 %. Results suggest that targeted visual query-
ing, not larger language models alone, is the critical driver of geometric reasoning
performance.

1 [2 poINTs] INTRODUCTION AND PROBLEM DEFINITION (1-1.25 PAGES)

Multimodal technologies have demonstrated remarkable potential in tackling complex real-world
tasks, leveraging their powerful capability to integrate visual and textual information. Inspired by
this emerging trend, our team was intrigued by the possibility of effectively applying these tech-
nologies within the traditionally challenging domain of mathematics. Specifically, we asked: could
the rapidly evolving vision-language models (VLMs) yield breakthrough results when applied to
geometric mathematical problems?

To clarify our research motivation, we first examined recent developments in mathematical reason-
ing technologies. Over the past few years, large language models such as GPT-3 and GPT-4 have
made significant strides in algebra, logical reasoning, and solving complex text-based problems, ex-
emplified by their excellent performance on benchmark datasets like GSM8K( [Forootani| (2025)) ).
These advancements provided essential insights and encouragement for further research. However,
our curiosity grew regarding model performance when reasoning tasks expand beyond pure textual
logic, involving visual and spatial interpretation of images.

Consequently, our team decided to focus specifically on geometric reasoning tasks within math-
ematics. Unlike typical text-based reasoning problems, geometry requires precise perception and
reasoning about detailed structural and spatial relationships within images—such as points, lines,
surfaces, geometric shape combinations, segment lengths, angle measurements, parallel or perpen-
dicular relationships, shapes’ containment and partitioning, overall symmetry, and spatial layouts.
Recent advancements in vision-language models, notably GPT-4V and LLaVA-7B, have demon-
strated robust general visual comprehension abilities, seemingly offering ideal solutions for this task
(|Guo et al.|(2023) , |OpenAll (2023) ). However, upon deeper literature review, we discovered that
even these state-of-the-art models exhibit significant limitations and shortcomings in specific geo-
metric image reasoning tasks, particularly in handling precise spatial details [Zhang et al.| (2024b).

Further investigation into possible reasons for these shortcomings led us to examine popular geomet-
ric datasets such as MathVerse [Zhang et al.| (2024b)) and Geometry3K. We found that while current
datasets commonly provide geometric images, question texts, choices, and answers, they lack de-
tailed, explicit, and structured geometric image descriptions. This absence of descriptive context
may significantly limit the models’ ability to thoroughly understand image information, thus im-
pairing their performance on detailed geometric reasoning tasks|Zhang et al.| (2024b).
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Based on these findings, we clearly defined our research goal: If we proactively generate and provide
explicit, structured descriptions of geometric images, can this effectively enhance the performance
of vision-language models on geometric reasoning tasks? To verify this question, we explicitly
formulated two core hypotheses:

1.1 RESEARCH HYPOTHESES

» Caption Benefit Hypothesis: Providing detailed and explicit image descriptions can sig-
nificantly enhance model accuracy on geometric problems compared to using only raw
images or text.

» Task-Focused Caption Hypothesis: Descriptions specifically tailored to focus on visual
features directly related to geometric problem-solving (e.g., specific angles, segment re-
lations) will more effectively improve model reasoning capabilities and overall problem-
solving performance compared to general image descriptions.

Building on this motivation, our final solution extends the classic perception-reasoning split into
an iterative three-component loop—planning — targeted visual question answering — belief-state
reasoning—so that the system can actively request missing geometric facts before committing to a
final answer.

1.2 CONTRIBUTIONS
To achieve and validate these hypotheses, our project clearly offers four main contributions:

1. Proposing and validating a novel multimodal geometric reasoning pipeline: We explic-
itly divided the geometric reasoning task into two distinct stages: perception and reasoning.

* Perception Stage (VLM Stage): Utilizing advanced vision-language models (such as
GPT-4V and Qwen-VL) to generate structured descriptions of geometric images.

* Reasoning Stage (LLM Stage): Combining generated detailed descriptions with prob-
lem texts to enable final reasoning and answer generation by large language models
(e.g., GPT-40).

2. Introducing a task-oriented structured image description generation strategy for ge-
ometric problems: Our method addresses the lack of structured image descriptions in
existing datasets by clearly instructing the model-generated descriptions to focus specifi-
cally on visual features directly relevant to problem-solving, thereby enhancing the model’s
precise understanding of geometric details.

3. Conducting comprehensive and detailed baseline comparative analyses: We systemat-
ically compared eight different model combinations and strategies, ranging from pure text
models (GPT-3.5, GPT-40, Mistral 7B) and simple multimodal fusion models (CLIP+GPT-
3.5, BLIP+GPT-3.5) to advanced vision-language model combinations (GPT-4V, Qwen-
VL, InternLM). Through our experiments, we clearly showcased differences in description
generation capabilities, reasoning capabilities, and overall accuracy among these models.

4. Providing clear and in-depth experimental insights and analysis: By analyzing Chain-
of-Thought (CoT) reasoning scores, description generation scores, and their combined
overall accuracy, we conclusively demonstrated that detailed image descriptions have a
significant positive impact on overall geometric reasoning accuracy. Furthermore, our ex-
perimental design allows us to identify whether errors originate from the perception (mis-
perception) or reasoning (miss reasoning) stage, providing valuable guidance for future
model accuracy improvements.
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2 [5 poiNTs] RELATED WORK AND BACKGROUND (5 PAPERS PER
PERSON)

Related Datasets Several recent works have advanced the field of mathematical and geometric
problem-solving using multi-modal models. The MATH dataset Hendrycks et al.| (2021)) provides
a large-scale benchmark focused on text-based mathematical problem-solving, while MathVista|Lu
et al.| (2023) expands this space by evaluating multi-modal models on visual math problems that
combine diagrams with textual descriptions. GeoEval [Zhang et al.|(2024a) introduces a specialized
benchmark for geometric reasoning, designed to test the ability of the models to interpret complex
figures and solve geometry questions. MathVerse Zhang et al.| (2024b)) further investigates whether
multi-modal LLMs can truly ”see” and reason over diagrams, revealing important gaps between
image understanding and symbolic reasoning.

Prior Work To address these challenges, a variety of models have been proposed. G-LLaVA |Gao
et al.| (2023)) adapts multi-modal LLMs to geometric problem-solving by integrating visual and tex-
tual features, while Inter-GPS [Lu et al.| (2021) introduces formal symbolic reasoning pipelines to
enhance interpretability and solution accuracy. UniMath [Liang et al.|(2023) aims to build a founda-
tional multi-modal mathematical reasoner across different modalities and task types. ChatGLM-
Math [Xu et al.| (2024b) focuses on improving text-based math problem-solving through a self-
critique pipeline, showing that even unimodal LLMs can benefit from better reasoning structures.
Dual-Reasoning Geometry Solver (Dual-GeoSolver) |Xiao et al.| (2024) explores a dual-reasoning
approach inspired by human problem-solving strategies, emphasizing the importance of both visual
and symbolic understanding. Reason-and-Execute prompting method Duan et al.|(2024) proposes a
framework for breaking down complex geometry questions into executable steps to enhance struc-
tured reasoning.

More recently, GeoX [Xia et al|(2024) presents a unified pretraining framework that jointly for-
malizes visual diagrams and symbolic descriptions, enabling better alignment between vision and
language for geometric problem-solving. Similarly, Geo-LLaVA Xu et al.|(2024a) extends the capa-
bilities of multi-modal LLMs by applying meta in-context learning and retrieval-augmented training
on solid geometry datasets, achieving state-of-the-art results on benchmarks like GeoQA (fromDuan
et al.| (2024)) and GeoMath (orginal to Geo-LLaVA Xu et al.|(20244a)). GeoGPT4V |Cai et al.|(2024)
explores synthetic generation of geometric figures to augment training and evaluation data, further
pushing the boundaries of geometry-focused multimodal learning.

Unimodal and Multimodal Baselines Baseline models in this domain often start from unimodal
language models such as ChatGLM-Math |Xu et al| (2024b)) or solvers evaluated on the MATH
dataset Hendrycks et al.| (2021)), providing a reference point for text-only problem-solving capa-
bilities. In parallel, foundational vision-language models like ViLT Kim et al.[(2021) and BLIP-2
Li et al.| (2023) have laid critical groundwork for multi-modal learning, evaluated through image-
text retrieval and captioning tasks with metrics like Recall@1, BLEU, and CIDEr. GPT-4V [Yang
et al.| (2023) builds upon these efforts, expanding vision-language capabilities into more complex
reasoning domains, including math and science-related tasks.

Relevant techniques Relevant techniques have also evolved alongside model architectures. Multi-
modal Chain-of-Thought|Zhang et al.|(2023b) reasoning introduces structured multi-step prompting
to enhance complex problem-solving across visual and textual modalities. Compositional Chain-of-
Thought Mitra et al.|(2024) further explores how reasoning steps can be broken down and composed
dynamically, improving both flexibility and generalization in multi-modal tasks. In their paper "Be-
yond Lines and Circles” the authors Mouselinos et al.|(2024) investigates persistent challenges in
LLM geometric reasoning, emphasizing that current models still struggle with deep understanding
of spatial relations. Finally, Mavis Zhang et al.| (2024c) leverages automated visual instruction tun-
ing to construct high-quality training data at scale, addressing data scarcity issues in mathematical
vision-language tasks.

Together, these datasets, models, baselines, and techniques form a rapidly growing research land-
scape focused on advancing multi-modal reasoning, particularly for challenging domains like math-
ematical and geometric problem solving.
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3 [1 poinTs] TASK SETUP AND DATA

The primary task of our project is to solve mathematical geometry reasoning problems by integrating
textual and visual information to accurately answer multiple-choice questions (MCQs).

We utilize a subset of the MathVerse dataset Zhang et al.| (2024b), which includes 750 training
samples and 250 testing samples. These samples are categorized into four versions based on the
distribution of information across modalities:

* Text Dominant: Provides detailed textual descriptions with supporting images.

* Vision Dominant: Images contain the majority of critical information, supplemented by
minimal text.

» Text Lite: Very brief textual information, with images as the main information carrier.

* Vision Only: Solely visual information without any text.
In our task design, the geometric reasoning process is explicitly divided into two stages:

* Perception Stage: Vision-language models (e.g., GPT-4V, Qwen-2.5-VL) are employed to
generate structured descriptions of geometric images. These descriptions focus on extract-
ing key entities and relationships, such as points, lines, angles, and spatial configurations.

» Reasoning Stage: The structured image descriptions are combined with the original ques-
tion texts and passed into large language models (e.g., GPT-40) for chain-of-thought (CoT)
based reasoning and final MCQ answer generation.

This two-stage separation enables a clearer analysis of bottlenecks and strengths within perception
and reasoning individually.

To further reduce residual uncertainty, our experiments also evaluate an iterative variant that loops
through “Planner — VQA — Belief-state” cycles (maximum 3 rounds) before entering the final
reasoning stage. This setting mirrors the full pipeline detailed in Section 5 and allows us to quantify
the benefit of active information acquisition.
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4 [1 poinTs] BASELINES

To systematically evaluate the impact of different modality input strategies on geometric reasoning
tasks, we designed and tested eight baseline models, covering three main categories: unimodal
reasoning, simple multimodal fusion, and competitive multimodal understanding. These baselines
establish a solid foundation for subsequent model comparisons and performance analysis.

4.1 UNIMODAL TEXT-DOMINANT BASELINES

We first assessed the reasoning performance using text-dominant input, evaluating the following
large language models:

¢ GPT-3.5 (Text Dominant)
¢ GPT-40 (Text Dominant)
¢ Mistral-7B (Text Dominant)

In this setting, the models receive question text, with any necessary visual information embedded
within the text description. This enables us to benchmark the maximal reasoning capabilities achiev-
able without detailed visual input and quantify the added value of multimodal integration.

4.2 SIMPLE MULTIMODAL FUSION BASELINES

We then explored basic multimodal strategies involving direct feature fusion, employing two mod-
eling approaches:

* GPT-3.5 + CLIP: CLIP is used to separately extract embeddings from images and text,
followed by linear mapping fusion, with the resulting fused representation passed into GPT-
3.5 for answer generation.

* GPT-3.5 + BLIP: BLIP generates textual descriptions from images, which are concate-
nated with the question text and input into GPT-3.5 for reasoning.

These simple fusion baselines assess the effectiveness of low-cost visual-text integration approaches
for geometric reasoning tasks.

4.3 COMPETITIVE MULTIMODAL BASELINES

To further explore the potential of vision-language models in complex reasoning, we evaluated three
advanced multimodal understanding methods:

e GPT-3.5 + InternLM-XComposer2: InternLM-XC2 generates joint visual-textual de-
scriptions, which are combined with the problem text and passed to GPT-3.5 for final
reasoning.

* GPT-4V: GPT-4V directly processes combined image and text inputs, producing detailed
visual understanding and logical reasoning steps.

* Qwen-2.5-VL: Qwen-2.5-VL performs end-to-end joint visual-textual reasoning, directly
generating final answers.

In all baseline experiments, the final MCQ answer is consistently generated by GPT-3.5 to control
for differences in language model reasoning ability and ensure fair comparison across different input
strategies.

Through the systematic comparison of these eight baselines, we provide an in-depth analysis of the
contributions of visual information at various stages of feature extraction, description generation,
and logical reasoning, forming a strong empirical basis for our proposed modeling improvements.
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5 [3 poiNTs] PROPOSED MODEL (>1 PAGE)

Our proposed model consists of three main parts. Essentially, Planner asks the initial and follow-up

questions, VQA reads the image, Reasoner finishes the problem.

MathVerse Dataset

LLM Generated Answer

Vision-Dominant Question
Example:

.80“

As shown in the figure, DE
parallel BC, then the size of

angle CED is? 3 c LLM Reasoner
Reasons based on generated descriptions.
/ shmtetett bttt ittt 3
)+ Since DE parallel to BC, AABC is similar to AADE. :
| Since complementary, zAED and ~CED add up to 180°.... |

LLM Planner VQA Model R et ettt J

Generates query list Answers query by loop

[ 3

« Does DE parallel to BC? ! * Yes.

|

| |

| « DoesDE belongstoany | '  Yes, triangle ADE.
: shape? | * No.
1 .

« Is angle CED labeled?... : ......

Figure 1: Proposed pipeline structure

A more detailed description of each part is as such:

Useful Description + Question

Stage Component

Input it receives

Qutput it produces

How the output is
used

1 Planner LM Plain question text; Up to 3 short follow-up
Previous Q/A  log queries, one per line. If
(empty in round 0) none are needed, returns

"NONE”.

2 VQA model Query text asking for A short answer (”Yes,
relevant information in ABC 1is a triangle.”,
diagram; 760°”, "UNKNOWN?”,
Original diagram image  etc.).

3 Belief-state builder All previous Q/A pairs;  Belief-state  string—a

(simple Python code) = New Q/A from Stage 2  newline-separated tran-
script (e.g., “Ql:
Al: ... Q2: ... A2:
).
4 Reasoner LM Final belief-state string; A two-part response.

Original question text

Reasoning Step: short
chain of logic in prose;
Final Answer: one op-
tion letter (A/B/C/D).

Each query is sent,
one by one, to Stage
2.

The pair Q,/A,, is ap-
pended to the belief-
state string.

The updated string is
passed back to Stage 1
for the next round and
to Stage 4 once loop-
ing stops.

Final Answer is the
pipeline’s prediction
for accuracy grading.

Table 1: Description of each stage in the pipeline.



Submitted as a class report for 11-777 at CMU

Loop control:
The planner, VQA model, and belief-state builder (Stages 1 — 2 — 3) repeat until either:

* The planner determines the current belief-state string contains enough information and thus
outputs NONE, or

* The hard cap of rounds (currently set to 3) is reached.

After that, Stage 4 runs once and the pipeline ends.

Here are a table of different choices of models for each part.

Pipeline tag  Planner LM VQA model Reasoner LM
P-1 Mathstral-7B-v0.1  InternLM-XC2-VL-7B  Mathstral-7B-v0.1
P-2 Qwen-Chat-7B Qwen-VL-Chat Qwen-Chat-7B
P-3 GPT-3.5-Turbo GPT-40-VQA GPT-3.5-Turbo
P-4 GPT-4o0 (text) GPT-4o0 (vision) GPT-4o (text)

Table 2: Planner, VQA, and Reasoner models used in each version of pipeline.

5.1 LOSS FUNCTIONS

None are needed.
All models are frozen; gradients are not computed or updated. We only do forward passes.
Yet there is a logical loss being minimised at run-time:
* Planner’s implicit loss to minimize number of model generations / API calls — ask as few
extra questions as possible while still solvable. We let the model decide when to stop,

so this loss minimization is implemented by prompt tuning, asking the model to return
“NONE” when no new information seems useful.

5.2 CHANGES TO TRAINING DATA

Our pipeline didn’t require any training, thus no extra images, labels, or fine-tuning examples are
added.

Filtering to question_type = "Vision Dominant" is the only data step. This is because
in this category much of the geometric detail (right-angle marks, parallel ticks, labeled lengths, etc.)
appears only in the diagram, while the text is deliberately minimal. By filtering to this subset, we
guarantee that

» Stage 2 (VQA) is essential. Without the extra queries the problem is unsolvable.

* The evaluation can measure the quality of our query-planning and vision reading rather
than pure text reasoning.

The belief-state string is a temporary text, thus not stored back to the dataset.
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5.3 HYPERPARAMETERS AND THEIR EFFECTS

Name (in code) Default Effect

MAX_ROUNDS 3 Upper bound on LM<VQA cycles. 2 is faster-but-
weaker; 4 adds cost in API calls and wait time with
<0.2 pt gain in description quality score.

temperature (Planner) 0.2 Keeps questions short and focused.

max_new_tokens (Planner / 128 /200 Prevents truncation.

Reasoner)

do_sample=False in VQA -

float16 / bfloat16 -

This forces greedy decoding, ensures no random token
picking, so angle values and simple “Yes/No” answers
can hopefully stay fixed and repeatable instead of drift-
ing.

Reduces VRAM, helps the model to fit in L4/A100
GPU’s. No measurable accuracy loss.

Table 3: Hyperparameters and their effects in the pipeline.
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Metrics
Methods Accuracy CoT Reasoning CoT Description
Baseline models — unimodal (text-only LM)
GPT-3.5-turbo (Text) 0.22 - -
GPT-40 (Text) 0.58 - -
Mistral-7B Jiang et al.|(2023) (Text) 0.18 - -
Baseline models — competitive (Reasoner LM + Vision model)
GPT-3.5 + BLIP|Li et al.|(2022) 0.13 - -
GPT-3.5 + CLIP|Radford et al.|(2021) 0.12 1.28 0.06
GPT-3.5 + InternLM-XC2 Zhang et al.|(2023a) 0.14 2.20 1.46
GPT-4V Yang et al.|(2023) 0.44 2.60 2.46
Qwen2.5-VL|Qwen et al. [(2025) 0.52 2.68 2.28
Proposed models: Planner LM + VQA model + Reasoner LM
Mathstral-7B + InternLM-VL-7B + Mathstral-7B 0.10 1.40 1.18
Qwen 2.5-Chat-7B + Qwen 2.5-VL-Chat + Qwen 2.5-Chat-7B 0.34 3.08 2.46
GPT-3.5-Turbo + GPT-40-VQA + GPT-3.5-Turbo 0.16 2.66 2.62
GPT-4o0 text + GPT-40 vision + GPT-40 text 0.40 4.00 2.86

Table 4: Overall Accuracy, Chain-of-Thought (CoT) Reasoning, and CoT Description scores for
unimodal text baselines, competitive multimodal baselines, and proposed planner—VQA-reasoner
pipelines.

6 [1 poinTs] RESULTS (1 PAGE)

Replace columns with the correct metrics for your task (extrinsic). Include multiple versions of your
final model. You do not need to run on the test set but are encouraged to try if you have nice results
on Dev.

Brief Discussion. The full GPT-40 pipeline achieves the best Chain-of-Thought (CoT) scores
(4.00 reasoning, 2.86 description) and ranks second in accuracy.

Our Qwen—Qwen setup is the strongest open-weights alternative, trailing GPT-40 by 6 percentage
points in accuracy but matching its description quality.

Mathstral — InternLM underperforms, confirming that stronger vision is required on this dataset.

Clarification on Dev. Dey refers to a 200-problem subset of MathVerse |Zhang et al.| (2024b) that
we created for validation: 100 items are free-form questions and 100 are multiple-choice. The
result table shown in this section is the overall average. Section 7 breaks the metrics down by these
two question types.
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7 [3 poiNTs] ANALYSIS (2 PAGES)

7.1 INTRINSIC METRICS

7.1.1 CHAIN-OF-THOUGHT COHERENCE

Chain-of-Thought Coherence (reasoning_score):

[gl,gg,...

For every problem, the model produces
a free-form explanation (reasoning_response). We first distil this narration into exactly six
atomic steps s; g with a GPT-4 instruction following “Extract 6 key intermediate steps needed to
reach the answer.” The concise list is subsequently graded by GPT-40-V, which sees the diagram,
the question, the ground-truth answer, and the six steps, and returns a binary vector

796] € {Oa 1}67

where g; = 1 indicates that step s; is both logically valid and visually grounded. The item-level

score is

reasoning.score = Zgi e {0,...,6}.

Example Model Output (InternLM-XC2 + gpt3.5):
Angle AOC is an angle inscribed in a circle, meaning it is equal to half the
measure of the intercepted arc AC.\n- Since AB is a diameter of the circle,
angle AOB is a right angle, meaning it measures 90°\n- Therefore, angle AOC
=126.0° is equal to half the measure of arc AC which is 252.0°\n\nNow, we...

@-step Extractions:

[s1] Angle AOC is identified as an angle inscribed in a circle, suggesting that
it equates to half the measure of intercepted arc AC.

correct option letter, [s2] Angle AOB is determined as right, due to AB being a diameter of the

eg. A B, C,D,atthe circle, thus it measures 90°.

end. [s3] Deduction that the angle AOC (126.0°) is equal to half the measure of arc
As shown in the AC (252.0°).

figure, and angle AOC [s4] Understanding that angle AOB is a right angle, it's determined that angle
=126.0, then angle COBis also a right angle, and angle COE is equal to half the measure of arc

Question:

Please first conduct
reasoning, and then
answer the question
and provide the

CDB = ()? CE.

Choices: [5] Applying the property that in cyclic quadrilateral, angle CEF equals angle
AB4° FEB and their sum with angle FCE equals 180° to calculate angle FEB as (180
B:64° -126)/2 = 27°

c27° [s6] Final step concludes that the measure of angle CDB is equal to the
D:37° measure of angle FEB, which in tum is calculated to be 27°. The answer is
Answer: C

Version: Text Lite

@cre option C: 27°,

/

/Multi-step Scoring:

[s1] Angle AOC is identified as an angle inscribed in a circle,
suggesting that it equates to half the measure of intercepted
arc AC.

[s2]

[s3] Deduction that the angle AOC (126.0°) is equal to half the
measure of arc AC (252.0°).

[s4] Understanding that angle AOB is a right angle, it's
determined that angle COB s also a right angle, and angle COE
is equal to half the measure of arc CE.

[s5] Applying the property that in cyclic quadrilateral, angle CEF
equals angle FEB and their sum with angle FCE equals 180° to
calculate angle FEB as (180 - 126)/2 = 27°.

[s6] Final step concludes that the measure of angle CDB is
equal to the measure of angle FEB,

o

~

X

X X X =8

X

/

Figure 2: CoT Evaluation on intermediate reasoning steps

Methods

CoT Reasoning Score

multi-choice

free-form

overall

Baseline models: Reasoner LM + Vision Model

GPT-3.5 + CLIP |Radf0rd et al (2021
GPT-3.5 + InternLM-XC2Zhang et al.| (2023a)

GPT-4V |Yang et al.{ (2023

Qwen2.5-VL|Qwen et al.[(2025)

1.36
2.60
2.80
2.36

1.20
1.80
2.40
3.00

1.28
2.20
2.60
2.68

Proposed models: Planner LM + VQA model + Reasoner LM

Mathstral-7B + InternLM-VL-7B + Mathstral-7B

Qwen 2.5-Chat-7B + Qwen 2.5-VL-Chat + Qwen 2.5-Chat-7B

GPT-3.5-Turbo + GPT-40-VQA + GPT-3.5-Turbo
GPT-40 text + GPT-40 vision + GPT-40 text

1.52
2.80
2.64
4.24

1.28
3.36
2.68
3.76

1.40
3.08
2.66
4.00

Table 5: Chain-of-Thought (CoT) description scores for baseline versus proposed models.
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7.1.2 CHAIN-OF-THOUGHT PROBLEM DESCRIPTION FAITHFULNESS

Chain-of-Thought Problem Description Faithfulness (description_score): In solving the
math problems, the success depends on accurately extracting the facts given in the written descrip-
tion, because the diagram will adds many important information. GPT-4o0 therefore read each origi-
nal prompt and extracts six important facts (e.g. geometric entities, angle equalities, numeric labels).
The same model then compares that reference list with the solver’s fused_description and
returns a binary presence vector [dl, e ,dﬁ], yielding

6
description_score = Z d;.
i=1
A perfect score of 6 implies the model preserved every given fact; lower totals reveal hallucinations
or omissions that can cascade into downstream reasoning errors. The metric’s average over the text-

dominant split measures how reliably a solver constructs an accurate internal representation of the
problem statement.

D
Example Generated Description (InternLM-XC2): / Multi-step Scoring: \
The diagram shows a circle with three points labeled
. Line

4 B 1: Circle cent t 4

passing through point O. Line segment CD is a chord of the circle, [ Circle centared at O] v

intersecting line segment AB at point E. Point F is the midpoint of line

t CD. \
¢ segmen [s2: Diameter AB]

Question:
Please first conduct [s3: Points: A, B, C, D, 0]
reasoning, and then answer
the question and provide the Key-step Extractions from Ground Truth Desc: . " X
correct option letter, e.g., A, [s1: Circle centered at O] [s4: Angle AOC =126.0°]
B,C,D,at the end. [s2: Diameter AB]
As shown in the figure, and [s3: Points: A, B, C, D, O] x
angle AOC = 126.0, then [s4: Angle AOC = 126.0°] [s5: Points B, C and D are on the circle]
angle CDB = ()? [s5: Points B, C and D are on the circle]
Choices: X
AB4° G270

[s6: Angle CDB is inscribed in the circle] L N B N
[s6: Angle CDB is inscribed in the circle]
B:64° D:37°

Figure 3: CoT Evaluation on Generated Description

/

CoT Description Score

Methods multi-choice free-form overall
Baseline models: Reasoner LM + Vision Model
GPT-3.5 + CLIP 0.12 0.00 0.06
GPT-3.5 + InternLM 1.68 1.24 1.46
CPT-40 + GPT-4V 2.92 2.00 2.46
Qwen 2.5+ Qwen 2.5-VL 2.68 1.88 2.28
Proposed models: Planner LM + VQA model + Reasoner LM
Mathstral-7B + InternLM-VL-7B + Mathstral-7B 0.96 1.40 1.18
Qwen 2.5-Chat-7B + Qwen 2.5-VL-Chat + Qwen 2.5-Chat-7B 2.96 1.96 2.46
GPT-3.5-Turbo + GPT-40-VQA + GPT-3.5-Turbo 3.36 1.88 2.62
GPT-4o0 text + GPT-40 vision + GPT-40 text 2.28 3.44 2.86

Table 6: Chain-of-Thought (CoT) description scores for baseline versus proposed models.
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7.1.3 FINAL-ANSWER ACCURACY

Final-Answer Accuracy (acc_score): Accuracy provides the conventional “right-or-wrong”
benchmark across the entire dataset. GPT-40 is shown the question, the official answer, and the
model’s answer and must reply with 1 if they match exactly (or 0 otherwise). Thus

acc_score € {0,1}, Accuracy = E[acc_score].

Accuracy score gives the most straightforward information to evlaute if the question has been an-
swered correctly or not. We pair it with the two six-point intrinsic metrics above to diagnose whether
errors stem from perception, reasoning, or a final arithmetic slip.

Accuracy
Methods multi-choice free-form overall
Baseline models — unimodal (text-only LM)
GPT-3.5-turbo (Text) 0.32 0.12 0.22
GPT-40 (Text) 0.64 0.52 0.58
Mistral-7B Jiang et al.|(2023) (Text) 0.28 0.08 0.18
Baseline models — competitive ( Reasoner LM + Vision model )
GPT-3.5 + BLIP|Li et al.| (2022) 0.20 0.07 0.13
GPT-3.5 + CLIP|Radford et al.[(2021) 0.16 0.08 0.12
GPT-3.5 + InternLM-XC2 [Zhang et al.[(2023a) 0.24 0.04 0.14
GPT-4V |Yang et al.[(2023) 0.52 0.36 0.44
Qwen2.5-VL|Qwen et al.| (2025) 0.64 0.20 0.52
Proposed models: Planner LM + VQA model + Reasoner LM
Mathstral-7B + InternLM-VL-7B + Mathstral-7B 0.16 0.04 0.10
Qwen 2.5-Chat-7B + Qwen 2.5-VL-Chat + Qwen 2.5-Chat-7B 0.40 0.28 0.34
GPT-3.5-Turbo + GPT-40-VQA + GPT-3.5-Turbo 0.24 0.08 0.16
GPT-40 text + GPT-40 vision + GPT-4o text 0.56 0.24 0.40

Table 7: Accuracy scores for unimodal text baselines, competitive multimodal baselines, and pro-
posed planner—VQA-reasoner pipelines.
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Figure 6: Final Accuracy Scores

Score Histograms comparing the best performing baselines with our proposed pipelines. The
purple bars represent the best-performing baseline methods. The green bars correspond to open-
source models used in our proposed pipelines, while the blue bars indicate closed-source models
used in our proposed pipelines.
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7.2 QUALITATIVE ANALYSIS AND EXAMPLES (FULL PAGE TABLES — MULTIPLE PAGES FOR
MOST PROJECTS)

7.2.1 ERROR ANALYSIS FOR PIPELINE: GPT-40 TEXT + GPT-40 VISION + GPT-40 TEXT

Input Image Task Question Key Portion of Model Output
Prompt: Caption (vision module):
“Consider the circle on the graph. “The circle is centered at the origin (0,0);
Find the equation of the circle in the radius is 5.”
standard form.”

Reasoning step:
Assumes (h,k) = (0,0), r = 5 =

2 + y2 = 25.
Predicted answer: 2> + y? = 25 (incor-
rect).

Ground truth: (z — 1)% 4+ (y — 3)% = 36.

Table 8: Example for error analysis: GPT-40

Stage What the component should What actually happened Why that breaks the final
do (pipeline output snippets) answer
1. Image- Detect geometric primitives “The circle is centered at the Anchors the pipeline to the
captioner (axis location, circle centre, origin (0, 0) ... The radius  wrong (h, k,r) = (0,0, 5);
radius). is5” classic object-location
hallucination.
2. VQA Ask clarifying questions to QI: centre — (0, 5) Pipeline now contains mutually
prompts override or confirm the (contradicts caption). Q2: inconsistent facts, but no
caption and reconcile radius — 5. mechanism flags the conflict
disagreements. between (0, 0) and (0, 5).
3. Reasoning  Combine trusted facts and Accepts centre = (0,0), » =5  Symbolically correct given
model output = 22 + y% = 25. wrong premises—illustrates
(x—h)?+ (y— k)2 =r2 cascading error: once
perception fails, logic can’t
Tecover.

Table 9: End-to-end error analysis for GPT-40
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7.2.2 ERROR ANALYSIS FOR PIPELINE: GPT-3.5-TURBO + GPT-40-VQA +
GPT-3.5-TURBO

Input Image Task Question Key Portion of Model Output
4 Prompt: Caption (vision module):
42 “As shown in the figure, circle O is “The line segment from O to BC' is per-

the circumscribed circle of NABC.
If ZBAC = 60° and the perpendicu-
lar from O to BC'is 2 units,

pendicular and measures 2 units, which is
the radius of the circle.”

Reasoning step:

find the length of BC. Treats AABC as equilateral, assumes
Choices: A)v3 B)2v3 C)4 r = 2, and uses BC = 2rsin(%3-) = 2.
D) 44/3” Predicted answer: BC' = 2 (incorrect —

choice A).
Ground truth: BC' = 44/3 (choice D).

52 e

Table 10: Example for error analysis: GPT-3.5-turbo

Stage What the component should What actually happened Why that breaks the final
do (pipeline output snippets) answer
1. Image- Parse the geometry: “The line segment from O to ~ Mis-labels the 2-unit
captioner ZBAC = 60° (inscribed); BC' is perpendicular and perpendicular as a radius, so the
identify the little right-angle measures 2 units, which is fact base is anchored to r = 2
mark as the distance from O  the radius of the circle.” instead of the correct r = 4.
to BC' (d = 2); recognise
only OB, OC are radii
(unknown).
2. VQA Ask clarifiers to distinguish Q: “Is there information The hallucination is accepted
prompts “radius” from “distance to about the radius of circle O?”  without challenge; pipeline

3. Reasoning
model

chord” and resolve any
conflict.

Use correct relations: central
angle 120° (since inscribed
60°), chord rule

BC = 27 sin 60°; combine
with r2 = (BC//2)? + d>.

A: “Yes ... the radius is 2.”

Assumes “AABC is
equilateral” and r = 2.
Computes

BC:QTSin% = 2.

now holds r = 2 with high
confidence and no contradiction
flag.

Two compounded
errors—wrong radius + treating
inscribed 60° as central—yield
BC = 2 instead of 4+/3.

Table 11: End-to-end error analysis for GPT-3.5-turbo
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7.2.3 ERROR ANALYSIS FOR PIPELINE: QWEN 2.5-CHAT-7B + QWEN 2.5-VL-CHAT +
QWEN 2.5-CHAT-7B

Input Image Task Question Key Portion of Model Output
y Prompt: Caption (vision module):
[ “Write an equation for the transfor- “Vertices at (2,-1), (3,3), (4,-1). Height of
4+ mation of f(x) = |x| as shown in the  the triangle is 4 units.”
34 figure. Reasoning step:

Interprets vertex at (3, 3), claims vertical
2+ stretch factor 4 and upward shift 3; con-
1 cludes g(z) = 4|z — 3| + 3.

1 Predicted answer: g(z) = 4|z — 3| + 3
0 } t —— (incorrect).
s 1 ﬁ 3 & 5 Ground truth: f(z) = —3|z — 3| + 3.
\

Table 12: Illustrative instance for error analysis of the absolute-value transformation task.

Stage What the component should What actually happened Why that breaks the final
do (pipeline output snippets) answer
1. Image Read the V—shape precisely: “The vertices of the triangle Mis-places the base 1 unit too
captioner vertex at (3, 3); arms hit the are at the points (2,-1), (3, 3), low (y = —1 instead of y = 0),
z-axis at (2,0) and (4,0); and (4,-1) ... The height of =~ making the height 4 not 3.
conclude height = 3 and the the triangle is 4 units.” Orientation (‘opens downwards’)
graph opens downward. is noted but the sign of the slope
is never extracted. Wrong height
— wrong stretch factor.
2. VQA Elicit or confirm shift, stretch ~ Some answers return Because the caption already
prompts and sign; resolve any “UNKNOWN?”; the carries a wrong height, the

3. Reasoning
model

ambiguity (vertex, slope sign,
intercepts).

Combine vertex (3, 3),
downward opening (—
negative sign), and slope
magnitude 3 (height 3 over
run 1) to obtain

g(z) = —3|x — 3| + 3.

extracted fact is that the

graph is “a V-shaped graph
. characteristic of an

absolute-value function.”

Assumes “height is 4 units . ..
graph is shifted 3 up and 3
right ... stretched vertically
by a factor of 4,” then
outputs g(z) = 4|z — 3| + 3.

prompt layer fails to retrieve
corrective facts (no mention of
baseline at y = 0 or negative
leading coefficient). The
erroneous i = 4 and unknown
sign persist.

Two compounded errors: 1. Uses
the caption’s h = 4 instead of 3.
2. Ignores the downward
orientation and keeps a positive
stretch, so the arms open upward.
The final rule has the wrong
slope magnitude and the wrong
sign.

Table 13: End-to-end error analysis for Qwen-2.5-7B
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7.2.4 ERROR ANALYSIS FOR PIPELINE: MATHSTRAL-7B + INTERNLM-VL-7B +
MATHSTRAL-7B

Input Image

Task Question

Key Portion of Model Output

Prompt:

“As shown in the figure, then angle

AOC = ()
Choices:

A:100° B:110° C:120° D:130°”

,-1 ,C

B

Caption (vision module):

“Points A, B, C lie on the circle centred at

O. Angle ABC =130°,”

Reasoning step:
The central angle AOC is exactly twice

the inscribed angle ABC if they subtend
the same arc AC. Thus AOC=130°%2 =
260°. Since 260° is larger than 180°, we
are looking for its complementary angle,
360° - 260° = 100°.

Predicted answer: D.130° (incorrect).
Ground truth: A.100°

Table 14: Example for error analysis: Mathstral-7B + InternLM-VL-XC2

Stage What the component should What actually happened Why that breaks the final
do (pipeline output snippets) answer

1. Image- Detect labeled angle and “AOC is a triangle. Angle The image module made

captioner geometric relationships BOC = 180°. Angle BAC is multiple mistakes, mistakened
between points and the circle  labeled as 130°.” the angle’s names, hallucinates
in the image about a non-existent triangle

and angles, etc.
2. VQA Ask clarifying questions to Q1I: Is AOC a triangle? Q2: Based on the current
prompts explore the diagram, gather Are there any labeled scalars  belief-state string it is asking

3. Reasoning
model

all information it needs.

Combine trusted facts and
use geometric rule of
inscribed angles.

in the diagram? Q3: What is
the measure of angle BOC?

Since angle AOC and angle
BOC are supplementary
angles, we can use the fact
that the sum of their measures
is 180 degrees to find the
measure of angle AOC.

sensible questions. Although it
hallucinates about non-existent
angle BOC, it is due to false
information provided by the
VQA model.

Uses the false fact and arrives
on an understanding of the
diagram that doesn’t make any
sense. The output 130° is pure
guess.

Table 15: End-to-end error analysis for Mathstral-7B + InternLM-VL-XC2
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8 [2 poiNTs] FUTURE WORK AND LIMITATIONS (1 PAGE)

8.1 LIMITATION

Despite the planner—VQA-reasoner architecture delivering promising overall accuracy, our experi-
ments reveal four systemic failure modes that currently cap its performance.

8.1.1 MEANINGFUL QUERIES, POOR VQA ANSWERS

The planner reliably produces semantically relevant follow-up questions, yet the vi-
sion—question—answering (VQA) module often supplies incorrect or low-confidence responses. The
mismatch is most severe for fine-grained spatial cues—e.g. tick-mark counts or colour-coded la-
bels—where a single pixel error flips the truth value.

8.1.2 HALLUCINATED GEOMETRIC RELATIONSHIPS

The VQA model frequently conflates inscribed with central angles, mistakes perpendicular distances
for radii, and misidentifies baselines in composite diagrams. These hallucinations enter the pipeline
as false facts and propagate into the reasoner, which then delivers logically impeccable—but factu-
ally wrong—proofs.

8.1.3 ABSENCE OF MEMORY & CONTRADICTION RESOLUTION

Answered questions are merely appended to the next prompt; no mechanism detects redundancy
or inconsistency. Consequently, mutually conflicting facts accumulate, degrading the quality of
downstream reasoning.

8.1.4 DATASET GAPS AND INCOMPLETE GROUND TRUTH

Several ground-truth image annotations omit implicit geometric constraints such as “horizontal”
or “equal length.” Fine-tuning on these partial labels teaches the model to ignore useful cues and
occasionally penalises otherwise correct, more detailed descriptions.

8.1.5 CHAT-API DEPLOYMENT DISCREPANCY

Outputs obtained via the GPT-40 API are noticeably noisier than those observed in the interactive
chat window, indicating that our prompting and alignment choices do not yet transfer cleanly across
interfaces.

Implications Taken together, these limitations show that the pipeline neither ensures long-range
factual consistency nor robustly grounds symbolic reasoning in accurate vision features. They mo-
tivate future work on memory-aware retrieval, adaptive query stopping, targeted VQA fine-tuning,
and systematic dataset re-annotation.

8.2 FUTURE WORK

8.2.1 MEMORY-AWARE RETRIEVAL

We will build a lightweight memory module that stores every Q—A pair in a structured buffer
and exposes read / write APIs to the planner. The planner can then retrieve, update, or discard
facts—eliminating redundant inquiries and resolving contradictions before they corrupt downstream
reasoning.

8.2.2 ADAPTIVE QUERY STOPPING

By monitoring the entropy of the VQA logit distribution (or another uncertainty proxy), the system
will halt question generation once the marginal information gain falls below a preset threshold. This
rule reduces inference cost and prevents the pipeline from drowning in low-value, noisy queries.

18



Submitted as a class report for 11-777 at CMU

8.2.3 CLOSING THE CHAT-API GAP VIA TARGETED FINE-TUNING

We observe that GPT-40 API calls yield noisier VQA answers than the interactive chat window. To
bridge this gap we will fine-tune the VQA backbone on a re-annotated dataset that zooms into salient
regions, crops irrelevant clutter, and adds explicit tags for angles, lengths, and parallelism—aligning
the model’s visual grounding with the planner’s expectations.

8.2.4 PROMPT-REFINEMENT LOOP

Before a query reaches the VQA stage, a language model will rewrite it for clarity and geometric
specificity, discouraging heuristic shortcuts and encouraging attention to subtle spatial cues. The
loop iterates until the refined prompt meets a quality threshold or the adaptive-stopping criterion is
triggered.

Overall Impact These upgrades directly target the weaknesses identified in our limitation analy-

sis—improving perceptual accuracy, enforcing factual consistency, and enhancing robustness across
deployment interfaces.
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9 [1 poiNnTs] ETHICAL CONCERNS AND CONSIDERATIONS
(UNINTENTIONAL, MALICIOUS, AND DUAL-USE)

Our system raises two primary ethical risks.
Misleading Outputs (Educational Fairness).

Errors in the perception stage—e.g., mis-reading a diagram’s center or angle—can propagate
through the chain-of-thought and yield confident yet incorrect answers. If adopted uncritically
for homework assistance or automated grading, such mistakes could misinform students and skew
assessments. Mitigation: integrate automatic contradiction checks within the belief-state; expose
a confidence score and key intermediate descriptions so instructors can spot-check results before
trusting them.

Representation Bias.

MathVerse Zhang et al.| (2024b) mainly contains clean, English-annotated diagrams; hand-drawn
sketches and non-Latin labels are under-represented. Consequently, performance may degrade on
these styles, disadvantaging certain learner groups. Mitigation: expand evaluation with multilingual
and hand-drawn diagrams, fine-tune on that data, and publicly document known blind spots to avoid
over-promising performance.

By embedding these safeguards and transparently reporting limitations, we aim to reduce harm
and enable safer deployment of multimodal geometry-reasoning systems in educational and related
contexts.
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